Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Marine microorganisms play a critical role in regulating atmospheric CO2concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation. To explore this observation further, we conducted a microcosm experiment using surface seawater collected from the Spring 2023 phytoplankton bloom in the Gulf of Maine. Unfiltered (natural community) and filtered (200 μm and 3 μm) seawater was sprayed with clay (20 mg L− 1and 60 mg L− 1) and incubated. All clay treatments led to a tenfold increase in TEP concentration. 16S rRNA gene amplicon sequence analyses of seawater and settled organoclay flocs showed the dominance of α-proteobacteria, γ-proteobacteria, and Bacteroidota. The initial seawater phytoplankton community was dominated by dinoflagellates followed by a haptophyte (Phaeocystissp.) and diatoms. Following clay addition, dinoflagellate cell abundance declined sharply while diatom cell abundance increased. By analyzing organoclay flocs for 18S rRNA we confirmed that dinoflagellates were removed in the flocs. The clay amendment removed as much as 50% of phytoplankton organic carbon. We then explored the fate of organoclay flocs at the next trophic level by feeding clay and phytoplankton (Rhodomonas salina) toCalanus finmarchicus. The copepod ingestedR. salinaand organoclay flocs and egested denser fecal pellets with 1.8- to 3.6- fold higher sinking velocity compared to controls. Fecal pellet density enhancement could facilitate carbon sequestration through zooplankton diel vertical migration. These findings provide insights into how atmospheric dust-derived clay minerals interact with marine microorganisms to enhance the biological carbon pump, facilitating the burial of organic carbon at depths where it is less likely to exchange with the atmosphere.more » « less
-
Driven by the cost and scarcity of Lithium resources, it is imperative to explore alternative battery chemistries such as those based on Aluminum (Al). One of the key challenges associated with the development of Al-ion batteries is the limited choice of cathode materials. In this work, we explore an open-tunnel framework-based oxide (Mo3VOx) as a cathode in an Al-ion battery. The orthorhombic phase of molybdenum vanadium oxide (o-MVO) has been tested previously in Al-ion batteries but has shown poor coulombic efficiency and rapid capacity fade. Our results for o-MVO are consistent with the literature. However, when we explored the trigonal polymorph of MVO (t-MVO), we observe stable cycling performance with much improved coulombic efficiency. At a charge–discharge rate of ~0.4C, a specific capacity of ~190 mAh g−1 was obtained, and at a higher rate of 1C, a specific capacity of ~116 mAh g−1 was achieved. We show that differences in synthesis conditions of t-MVO and o-MVO result in significantly higher residual moisture in o-MVO, which can explain its poor reversibility and coulombic efficiency due to undesirable water interactions with the ionic liquid electrolyte. We also highlight the working mechanism of MVO || AlCl3–[BMIm]Cl || Al to be different than reported previously.more » « less
An official website of the United States government
